Extracting sign language articulation from videos with MediaPipe

Carl "Calle" Börstell

- **Sign languages** are natural, full-fledged human languages
 - ~ 200 different languages documented (so far)
- Signs have a place of articulation (location relative to the body), a dominant hand (left or right) and can be either one- or two-handed

- **Sign languages** are natural, full-fledged human languages
 - ~ 200 different languages documented (so far)
- Signs have a place of articulation (location relative to the body), a dominant hand (left or right) and can be either one- or two-handed

ΤΑΧΙ

- **Sign languages** are natural, full-fledged human languages
 - ~ 200 different languages documented (so far)
- Signs have a place of articulation (location relative to the body), a dominant hand (left or right) and can be either one- or two-handed

ТО

- **Sign languages** are natural, full-fledged human languages
 - ~ 200 different languages documented (so far)
- Signs have a place of articulation (location relative to the body), a dominant hand (left or right) and can be either one- or two-handed

DINNER

However, we don't have reliable methods for automatically extracting or classifying phonological data!

Automatic extraction of "gesturing"

- Motion Capture
- **3D cameras** (e.g. Kinect)

Automatic extraction of "gesturing"

- Motion Capture
- 3D cameras (e.g. Kinect)
 - Requires **special** hardware and (**proprietary**) software
 - Part of recording session (pre-planning)

Automatic extraction of "gesturing"

- Motion Capture
- 3D cameras (e.g. Kinect)
 - Requires **special** hardware and (**proprietary**) software
 - Part of recording session (pre-planning)
- Computer vision models
 - Requires general hardware and free software
 - Can be done in post-processing (after recording)

MediaPipe (by Google)

- Free software with many implementations (e.g. Python)
- **Pre-trained model** that recognizes human location/movement in video
- Can be used with detailed models estimating face and finger landmarks, or more basic **body pose estimation**

MediaPipe output

11

0. nose 1. left_eye_inner 2. left_eye 3. left_eye_outer 4. right_eye_inner 5. right_eye 6. right_eye_outer 7. left_ear 8. right_ear 9. mouth left 10. mouth_right 11. left_shoulder 12. right_shoulder 13. left_elbow 14. right_elbow 15. left_wrist 16. right_wrist

17. left_pinky 18. right_pinky 19. left_index 20. right_index 21. left thumb 22. right_thumb 23. left_hip 24. right_hip 25. left_knee 26. right_knee 27. left_ankle 28. right_ankle 29. left_heel 30. right_heel 31. left_foot_index 32. right_foot_index

MediaPipe output

0. nose 1. left_eye_inner 2. left_eye 3. left_eye_outer 4. right_eye_inner 5. right_eye 6. right_eye_outer 7. left_ear 8. right_ear 9. mouth left 10. mouth_right 11. left_shoulder 12. right_shoulder 13. left_elbow 14. right_elbow 15. left_wrist 16. right_wrist

17. left_pinky 18. right_pinky 19. left_index 20. right_index 21. left thumb 22. right_thumb 23. left_hip 24. right_hip 25. left_knee 26. right_knee 27. left_ankle 28. right_ankle 29. left_heel 30. right_heel 31. left_foot_index 32. right_foot_index

MediaPipe output

0. nose 1. left_eye_inner 2. left_eye 3. left_eye_outer 4. right_eye_inner 5. right_eye 6. right_eye_outer 7. left_ear 8. right_ear 9. mouth left 10. mouth_right 11. left_shoulder 12. right_shoulder 13. left_elbow 14. right_elbow 15. left_wrist 16. right_wrist

17. left_pinky 18. right_pinky 19. left_index 20. right_index 21. left thumb 22. right_thumb 23. left_hip 24. right_hip 25. left_knee 26. right_knee 27. left_ankle 28. right_ankle 29. left_heel 30. right_heel 31. left_foot_index 32. right_foot_index

My goals

- What form information can be extracted with MediaPipe?
 - The articulation phase of (STS) signs
 - The **dominant hand** (left or right)
 - The number of hands (one- or two-handed)
 - The main place of articulation

My goals

What form information can be extracted with MediaPipe?

Could potentially lead to a quick (but dirty) way of annotating existing datasets of sign language videos

- The number of hands (one- or two-handed)
- The main place of articulation

STS dictionary

- >20,000 sign videos
- >40 different **signers** in the videos (mostly right-handed)
- An extensive **lexical database** behind it **describing form and meaning** (and linking with the corpus)
- Thomas Björkstrand is the manager and he provided data about the signs and signers for this study (thanks!)

STS dictionary: sign TAXI

Videolänkar

Visa foton

Uppspelningshastighet

et Repetera video

Formbeskrivning D-handen, vänsterriktad och framåtvänd,

Ämne Fordon / allmänt

Lexikon-ID: 00001 Glosa i STS-korpus: TAXI(J) Engelska: cab

Transkription

Förekomster

Lexikonet: 3 träffar <u>Korpusmaterial: 6 av totalt 12 träffar</u> Enkäter: 0 träffar

Andra tecken med samma betydelse Uppdaterat: 2023-01-12

The sample of signs

- 1,292 sign videos that were
 - Non-compounds
 - Represented a diverse set of signers (handedness)
 - Represented diverse locations
- These were all downloaded from the dictionary and then
 processed with MediaPipe

The data

- 1,292 videos (approximately 2 secs long each)
- 107,955 video **frames** (videos are 25 fps or 50 fps)
- Only **5 landmarks** included = 539,775 data points

The output

The output

language,id,frame,video_height,video_width,landmark,x,y,hand,hands,movement,location
STS,4165,1,720,960,0,0.4843829870223999,0.22800175845623016,right,1_1,sym,neutral
STS,4165,1,720,960,11,0.639739453792572,0.4301624298095703,right,1_1,sym,neutral
STS,4165,1,720,960,12,0.3643210232257843,0.44197335839271545,right,1_1,sym,neutral
STS,4165,1,720,960,15,0.5331403613090515,0.852113664150238,right,1_1,sym,neutral
STS,4165,1,720,960,16,0.48698344826698303,0.8003442287445068,right,1_1,sym,neutral
STS,4165,2,720,960,0,0.4856907427310944,0.22824083268642423,right,1_1,sym,neutral

Full data and code: <u>https://osf.io/x3pvq/</u>

...

Normalizing the data

- Shoulder distance = norm
- Mean midpoint between shoulders is origo: everything's center
- X axis is scaled to norm = 1
- Y axis is scaled to norm = 0.6

- Total distance traveled by both hands
- Peaks in smoothed curve ≈ transport
- Valleys between peaks ≈ articulation

- Articulation phase is the **short sign**
- The first valley is the **start**
- The entire video is the **full sign**

- All signs have peaks
- 96.4% of signs had at least one valley
- If only one valley, end was defined as 2nd peak OR start+10 frames

Estimating hand dominance

- Hand dominance = which hand traveled a longer distance (right is default)
- Estimating hand dominance is more accurate with full sign
- No obvious difference between left/right

Estimating hand dominance

- Hand dominance estimation is more accurate with onehanded signs
- Full method still better
- Two-handed dominance doesn't really matter

Estimating # of hands

- Previous work (Östling et al. 2018) used a factor of 3 as the cut-off point in deciding number of hands
 - If one hand **moved 3x longer** than the other, it is a **one-handed** sign
- I tested the most accurate factor for the STS signs:
 - A factor of ≈2 seems best!

Estimating # of hands

- The full method is still the best
- The method is very accurate with two-handed signs, but struggles a little with one-handed signs and unbalanced two-handed signs
 - Unbalanced signs are in a way both one- and two-handed!

Estimating place of articulation

- Finally, the short method paid off!
- Also finding the start is useful
- Full method = useless
 - Shows transport and rest

Estimating place of articulation

Conclusions

- MediaPipe can be used to extract information about sign form directly from videos
- Transport movements (in dictionary signs) are useful for estimating hand dominance and number of hands
 - We simply get more data (and a bigger difference)
- Estimating place of articulation requires estimation of the key part of an actual articulation phase (e.g. the start)

Thanks!