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Sign languages

« Sign languages are natural, full-
fledged human languages

— ~ 200 different languages
documented (so far)

« Signs have a place of articulation
(location relative to the body), a
dominant hand (left or right) and
can be either one- or two-handed
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However, we don’t have reliable
methods for automatically
extracting or classifying
phonological data!




Automatic extraction of “gesturing”

 Motion Capture
« 3D cameras (e.g. Kinect)
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Automatic extraction of “gesturing”

 Motion Capture
« 3D cameras (e.g. Kinect)

« Requires special hardware and (proprietary) software
» Part of recording session (pre-planning)

« Computer vision models

* Requires general hardware and free software
« Can be done in post-processing (after recording)




MediaPipe (by Google)

* Free software with many implementations (e.g. Python)

* Pre-trained model that recognizes human
location/movement in video

» Can be used with detailed models estimating face and
finger landmarks, or more basic body pose estimation
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My goals

 What form information can be extracted with MediaPipe?
« The articulation phase of (STS) signs
 The dominant hand (left or right)

 The number of hands (one- or two-handed)

 The main place of articulation




My goals

Could potentially lead to a quick
(but dirty) way of annotating existing
datasets of sign language videos




STS dictionary
« >20,000 sign videos

« >40 different signers in the videos (mostly right-handed)

« An extensive lexical database behind it describing form and
meaning (and linking with the corpus)

« Thomas Bjorkstrand is the manager and he provided data
about the signs and signers for this study (thanks!)




STS dictionary: sign TAXI

Videolankar

Visa foton

Uppspelningshastighet

Repetera video

Formbeskrivning
D-handen, vansterriktad och framatvand,

Amne
Fordon / allmént

Lexikon-1D: 00001
Glosa i STS-korpus: TAXI (J).
Engelska: cab

Transkription
~r\¢®|e
De°l?

Férekomster

Lexikonet: 3 traffar

Korpusmaterial: 6 av totalt 12 tréffar
Enkater: o traffar

Andra tecken med samma betydelse
Uppdaterat: 2023-01-12




The sample of signs

« 1,292 sign videos that were
« Non-compounds
 Represented a diverse set of signers (handedness)
 Represented diverse locations

« These were all downloaded from the dictionary and then
processed with MediaPipe




The data

« 1,292 videos (approximately 2 secs long each)
« 107,955 video frames (videos are 25 fps or 50 fps)

« Only 5 landmarks included = 539,775 data points




The output




The output

language, id, frame,video height,video width,landmark, x,y,hand,hands,movement,location
STS,4165,1,720,960,0,0.4843829870223999,0.22800175845623016,right,1 1,sym,neutral
STS,4165,1,720,960,11,0.639739453792572,0.4301624298095703, right,1 1,sym,neutral
STS,4165,1,720,960,12,0.3643210232257843,0.44197335839271545,right,1 1,sym,neutral
STS,4165,1,720,960,15,0.5331403613090515,0.852113664150238,right,l_ljsym,neutral
STS,4165,1,720,960,16,0.48698344826698303,0.8003442287445068,right,1 1,sym,neutral
STS,4165,2,720,960,0,0.4856907427310944,0.22824083268642423,right,1_I,sym,neutral

Full data and code: https://osf.io/x3pva/



https://osf.io/x3pvq/

Normalizing the data

Shoulder distance = norm

Mean midpoint between shoulders
IS origo: everything's center

X axis is scaled to norm = 1

Y axis is scaled to norm = 0.6
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Estimating articulation phase
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Estimating articulation phase
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Estimating articulation phase

Articulation phase
Is the short sign

The first valley is
the start

The entire video is
the full sign
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Estimating articulation phase

« All signs have
peaks

=
P

.
W

* 96.4% of signs
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valley
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Estimating hand dominance

Hand dominance = which
hand traveled a longer
distance (right is default)

Estimating hand
dominance is more
accurate with full sign

No obvious difference
between left/right

Classification |:| incorrect . correct
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Estimating hand dominance

e Hand dominance Classification incorrect . correct
estimation is more

Full Short

accurate with one-
handed signs

100% -

75%

 Full method still better

50%

Accuracy

« Two-handed
dominance doesn'treally = 2s%;
matter
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Estimating # of hands

* Previous work (Ostling et al. 2018)
used a factor of 3 as the cut-off point in
deciding number of hands

» If one hand moved 3x longer than
the other, it is a one-handed sign

* | tested the most accurate factor for the
STS signs:

A factor of =2 seems best!
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Estimating # of hands

30

The full method is still the best

The method is very accurate with
two-handed signs, but struggles a
little with one-handed signs and
unbalanced two-handed signs

* Unbalanced signs are in a way
both one- and two-handed!

Prediction

2h

1h ~

1h

Full (factor=1.7)

289 384
(86%) (99%)
49 3
(14%) (1%)

92
(16%)
475
(84%)

Short (factor=1.8)

129 12
(38%) (3%)

1h 2h 2h
unbalanced balanced




Estimating place of articulation

Finally, the
short method
paid off!

Also finding the
start is useful

Full method =
useless

« Shows
transport
and rest
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Estimating place of articulation
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Conclusions

MediaPipe can be used to extract information about sign
form directly from videos

Transport movements (in dictionary signs) are useful for
estimating hand dominance and number of hands

« We simply get more data (and a bigger difference)

Estimating place of articulation requires estimation of the key
part of an actual articulation phase (e.g. the start)







